THE SYNTHESIS AND ENERGY BARRIERS TO RING INVERSION OF TRIAZOLO[4,3-d][1,4]BENZODIAZEPINONES

B. R. Vogt,* P. C. Wade and M. S. Puar The Squibb Institute for Medical Research

P. O. Box 4000

Princeton, New Jersey 08540

(Received in USA 23 March 1976; received in UK for publication 27 April 1976)

The effect, on biological^{1a-g} and physical^{2a,b} properties, of fusing a 5- or 6-membered heterocycle onto the therapeutically important 1,4-benzodiazepine nucleus is a subject of current interest. While the synthesis of a variety of representative imidazolo-³, oxazolo-⁴, and triazolo[1,4]benzodiazepines^{5,1d} have recently been described, the corresponding <u>s</u>-triazolo[4,3-d][1,4]benzodiazepin-6-one and -3,6-dione ring systems, <u>4</u> and <u>5</u>, have remained unknown.

We now wish to describe the syntheses of these novel heterocyclic systems by efficient, and generally applicable methods, as well as ΔF^* 's associated with the ring inversion. Together with the isomeric series described in the accompanying paper,⁶ they constitute the first examples of fully unsaturated monocyclic five-membered rings annelated to the "d" face of desphenyldiazepam.

Our initial "classical" approach⁷ to $\underline{4}$ and $\underline{5}$, via the reaction of chloroimide $\underline{1}$ with hydrazine hydrate (refluxing benzene), gave, instead of the expected intermediate amidrazone $\underline{2a}$, the dihydro-<u>as</u>-triazinone $\underline{3}$ (mp = 166-167.5°).⁸ On the assumption that $\underline{3}$ resulted from a transamular cleavage of the amide bond by the primary amino function in $\underline{2a}$, the reaction of chloroimide $\underline{1}$ with monoacyl hydrazines was investigated. Such "blocked" hydrazines should produce, as initial products, acylamidrazones incapable of attacking the amide bond. This approach was confirmed when the reaction of $\underline{1}$ with formylhydrazine (refluxing benzene or 1,2-dimethoxyethane, 12 hrs) furnished directly the desired 5<u>H</u>-<u>s</u>-triazolo[4,3-d][1,4]benzodiazepin-6-one <u>4a</u> (mp = 273-275°, 84% yield), as the product of chloride displacement and subsequent cyclodehydration. The generality of this reaction for the preparation of 3-substituted derivatives shown by the synthesis of the 3-methyl and 3-phenyl analogs <u>4b</u> (mp = 229-230°, 74%) and <u>4c</u> (mp = 204-205.5°, 82%), *via* the appropriate acyl hydrazines.

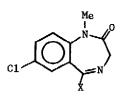
1931

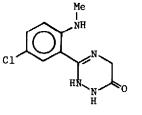
Since this synthetic method does suffer from certain limitations (e.g., the availability of the required hydrazides), the *in situ* generation of the elusive amidrazone 2a was investigated under conditions favoring its immediate reaction with external acyl derivatives. This route was ultimately successful, providing an alternate synthesis of a variety of triazoles not readily accessible by the original method. Thus, acid catalyzed removal of the <u>t</u>-BOC group in <u>2b</u> (obtained from <u>1</u> by reaction with *text*-butyl carbazate) in the presence of appropriate acyl derivatives (*i.e.*, refluxing trifluoroacetic acid/trifluoroacetic anhydride or oxalic acid/diethyl oxalate) afforded the corresponding 3-trifluoromethyl <u>4d</u> (mp 186-187°, 70%) and 3-carbethoxy <u>4e</u> (mp = 201-202°, 20%) derivatives presumably *via* amidrazone 2a.

The related $5\underline{H}-\underline{s}$ -triazolo[4,3-d][1,4]benzodiazepine-3,6-dione ring system $\underline{5a}$ was synthesized by reacting <u>1</u> with ethyl carbazate (refluxing dioxane 7 hrs.) (mp = 268-269°, 85%). While <u>5a</u> is potentially tautomeric with the 3-hydroxytriazole (<u>4f</u>), spectral evidence indicates that the dione (<u>5a</u>) is the predominent form, both in solution and as a solid. The uv spectrum of <u>5a</u> [λ_{Max}^{MeOH} 251, (ε = 17,900), 300 (3,680)] is similar to that of the alkylated derivatives which are incapable of tautomerism [e.g., <u>5c</u>, 253 (15,800), 302 (3,880)] and clearly different from the triazoles [e.g., <u>4a</u>, 231 (35,800), 250 (12,600), 298 (1,920)]. Similarly, the solid state ir spectrum of <u>5a</u> exhibits two bands in the "carbonyl region" (ν_{Max}^{KBr} 1700, 1670 cm⁻¹) as does <u>5c</u> (1690, 1670 cm⁻¹) while <u>4a</u> shows only one (1675 cm⁻¹).

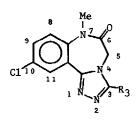
Alkylation of the triazolone ring in 5a was accomplished by refluxing its derived thallous salt in either methyl iodide (18 hrs.) or in a toluene solution of dimethylaminoethyl chloride (7 hrs.) to give the 2-methyl- or 2-(dimethylaminoethyl)triazolo-3,6-diones 5b (mp 292-294°, 17%) and 5c (mp of HCl salt = 284-285.5°, 71%). X-ray analysis of the methiodide derivative (5d, mp 249-250°dec.) of 5c confirmed that alkylation had indeed occurred on nitrogen as indicated and not on the oxygen atom at position-3.⁹

Additionally, the 3-substituted triazoles <u>4a-e</u> are characterized in the nmr (CDCl₃) by an NCH₃ singlet (τ 6.6 to 6.7), a methylene singlet (τ 4.7 to 5.6) that varies in sharpness depending on the substituent at the 3-position, and three aromatic protons (τ 1.9 d, 2.3 q, 2.6 d). While the nmr spectra of the triazolone series <u>5a-c</u> are essentially the same as those of <u>4</u>, the resonance of the C-ll proton, is shifted to higher field (τ 1.9 \rightarrow 2.2). This upfield shift is most probably due to the diminished anisotropic effect of the adjacent C=N bond relative to that of the fully delocalized triazole in 4.


A recent report^{2b} indicates that annelation of an isoxazole ring to the "d" face of diazepam (e.g., <u>6</u>) exerts little influence on the ring inversion barrier of the seven-membered ring $(\Delta F^* = 17.6 \text{ for } \underline{6} \vee 4.17.7 \text{ kcal/mol for } \underline{2c})$. In contrast, preliminary results with $\underline{4}$ and $\underline{5}$ (employing temperature dependent nmr analysis¹⁰ of the nonequivalent methylene protons) indicate a significant decrease in the free energy of activation for ring inversion ($\Delta F^* = 12.5-14.2 \text{ kcal/}$ mol). The ΔF^* is slightly affected by the steric bulk of the 3-substituents (e.g., $\underline{4a}$, $\Delta F^* =$ 13.1 kcal/mol and $\underline{4c}$, $\Delta F^* = 14.2$). Thus, it is seen that replacement of the phenyl group in diazepam $\underline{2c}$, or the phenyl and isoxazolo groups in $\underline{6}$, with a fused triazole or triazolone ring (as in $\underline{4}$ and $\underline{5}$) results in a significant increase in the conformational mobility of the seven-membered ring, indicating that it is the phenyl group in $\underline{2c}$ and $\underline{6}$ that is primarily responsible for the increased barrier (approx. 5 kcal/mol) to inversion of the seven-membered ring.

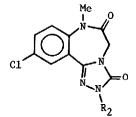

A comparison of the ΔF^* 's of <u>4</u> and <u>5</u> reveals that the ring inversion barrier is lower in the "3-oxo" triazolone series [e.g., <u>5c</u>, $\Delta F^* = 12.5$ kcal/mol], and reflects the increased flexibility of the fused triazolone ring in <u>5</u> (due ot its exocyclic oxo double bond) relative to the triazole ring in <u>4</u> (with its more restraining 2,3-endocyclic double bond).

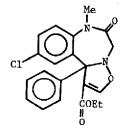
References and Notes


- 1a) S. Garattini, E. Mussini, L. O. Randel, editors. "The Benzodiazepines." Raven Press, New York, 1973.
- b) D. J. Greenblatt, "Benzodiazepines in Clinical Practice," Raven Press, New York, 1974 and references therein.
- c) R. Nakajima, Y. Take, R. Moriya, Y. Saji, T. Yui, and Y. Nagawa, Japan J. Pharmacol., <u>21</u>, 497 (1971).
- d) J. B. Hester, Jr., D. J. Duchamp, and C. G. Chidester, Tetrahedron Letters, 1609 (1971).
- e) B. Matta, A. E. Franco, L. A. LeZotte, A. D. Rudzik and W. Veldkamp, Current Ther. Res., <u>16</u>, 958 (1974).
- f) J. Schwartz, M. Kramer, T. Roth, Current Ther. Res., <u>16</u>, 964 (1974).
- g) L. F. Fabre, Jr. and R. T. Harris, Current Ther. Res., 16, 1010 (1974).
- 2a) K. Kamiya, Y. Wada and M. Nishikawa, Chem. Pharm. Bull., <u>21</u>, 1520 (1973).
- b) M. Raban, E. H. Carlson, J. Szmuszkovics, G. Slomp, C. G. Chidester and D. J. Duchamp, Tetrahedron Letters, 139 (1975).
- 3) J. P. Maffrand, G. Ferrand and F. Eloy, Tetrahedron Letters, 3449 (1973).
- T. Miyadera, A. Terada, M. Fukunaga, Y. Kawano, T. Kamioka, C. Tamura, H. Takagi, and R. Tachikawa, J. Med. Chem., <u>14</u>, 520 (1971).

- 5) D. L. Coffen, R. I. Freyer, D. A. Katonak and F. Wong, J. Org. Chem., 40, 894 (1975).
- 6) H. Breuer, following paper.
- 7) G. S. Sidhu, S. Naqui, and D. S. Iyengar, J. Heterocyclic Chem., 3, 158 (1966).
- 8) All new compounds gave satisfactory elemental and spectral analyses.
- 9) The single crystal X-ray crystallographic studies of <u>5d</u> were carried out at Squibb by Dr. J. Z. Gougoutas (U. of Minnesota) and Mrs. B. Toeplitz. The crystals have space group $P_{21/n}$ with a = 11.12, b = 14.885, c = 23.341 Å, β = 91.5° and Z = 8. The R factor, before least squares refinement, is 0.16. Further refinements of the X-ray data are pending and will be published elsewhere.
- 10) M. S. Puar, H. L. Yale and A. I. Cohen, Org. Mag. Resonance, 6, 106 (1974).

3


 $4a, R_3 = -H$


<u>4b</u>, $R_3 = -Me$

 $\underline{4c}$, $R_3 = -\overline{O}$

 $\frac{4d}{4e}, R_3 = -CF_3$ $\frac{4e}{4f}, R_3 = -CO_2Et$ $\frac{4f}{5a}, R_3 = 0H \neq 5a$

 $\underline{1}, X = C1$ $\underline{2a}, X = NHNH_2$ $\underline{2b}, X = NHNHCOC(CH_3)_3$ $\underline{2c}, X = - O''$

5a, $R_2 = -H \div 4f$ 5b, $R_2 = -Me$ 5c, $R_2 = -(CH_2)_2NMe_2$ 5d, $R_2 = -(CH_2)_2NMe_3 \cdot I^{\Theta}$

<u>6</u>